Spatial splitting-based optical mems interferometers
Abstract:
Embodiments of the present invention provide optical Micro Electro-Mechanical Systems (MEMS) interferometer including a spatial splitter, spatial combiner, moveable mirror and MEMS actuator. The spatial splitter receives an input beam and spatially splits the input beam into first and second interferometer beams. The spatial combiner receives the first and second interferometer beams and spatially combines them to produce an output. Each of the input beam, the first and second interferometer beams and the output beam propagate within a propagation medium that is different from the spatial splitter medium and the spatial combiner medium. The moveable mirror receives one of the first and second interferometer beams and reflects the received beam towards the spatial combiner. The MEMS actuator is coupled to the moveable mirror to cause a displacement thereof to produce an optical path difference between the first interferometer beam and the second interferometer beam. The spatial splitter may include, for example, a truncating splitter, a hollow Multi-Mode interference (MMI) waveguide, a slotted splitter or a Y-splitter. The spatial combiner may include, for example, a focusing element, a hollow MMI waveguide, a slotted combiner, a double slit combiner or a Y-combiner.
Images
EP20130710097
Ready to Streamline analysis processes for your business ?
See NeoSpectra in action and learn how it can enhance your analysis workflows. Complete the form to request a demo and we’ll be glad to guide you through its unique features.